首页> 外文OA文献 >A general methodology for optimal load management with distributed renewable energy generation and storage in residential housing
【2h】

A general methodology for optimal load management with distributed renewable energy generation and storage in residential housing

机译:在住宅中使用分布式可再生能源发电和存储的最佳负载管理的通用方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the US, buildings represent around 40% of the primary energy consumption and 74% of the electrical energy consumption[U.S. Department of Energy (DOE). 2012. 2011 Buildings Energy Data Book. Energy Efficiency & Renewable Energy].Incentives to promote the installation of on-site renewable energy sources have emerged in different states, including netmetering programmes. The fast spread of such distributed power generation represents additional challenges for the managementof the electricity grid and has led to increased interest in smart control of building loads and demand responseprogrammes. This paper presents a general methodology for assessing opportunities associated with optimal load managementin response to evolving utility incentives for residential buildings that employ renewable energy sources and energystorage. An optimal control problem is formulated for manipulating thermostatically controlled domestic loads and energystorage in response to the availability of renewable energy generation and utility net metering incentives. The methodologyis demonstrated for a typical American house built in the 1990s and equipped with a single-speed air-to-air heat pump, anelectric water heater and photovoltaic (PV) collectors. The additional potential associated with utilizing electrical batteriesis also considered. Load matching performance for on-site renewable energy generation is characterized in terms of percentageof the electricity production consumed on-site and the proportion of the demand covered. For the purpose of assessingpotential, simulations were performed assuming perfect predictions of the electrical load profiles. The method also allowsdetermination of the optimal size of PV systems for a given net metering programme. Results of the case study showedsignificant benefits associated with control optimization including an increase of load matching between 3% and 28%, withthe improvement dependent on the net metering tariff and available storage capacity. The estimated cost savings for the consumerranged from 6.4% to 27.5% compared to no optimization with a unitary buy-back ratio, depending on the availablestorage capacity. Related reduction in CO2 emissions were between 11% and 46%. Optimal load management of the homethermal systems allowed an increase in the optimal size of the PV system in the range of 13–21%.
机译:在美国,建筑物约占一次能源消耗的40%和电能消耗的74%。能源部(DOE)。 2012年。2011年《建筑物能源数据手册》。 [能源效率和可再生能源]。在各个州,包括净计量计划,都出现了促进现场可再生能源安装的激励措施。这种分布式发电的快速普及对电网的管理提出了额外的挑战,并引起了人们对建筑物负荷和需求响应程序的智能控制的越来越多的兴趣。本文提出了一种通用方法,用于评估与优化负荷管理相关的机会,以应对使用可再生能源和能源存储的住宅建筑物不断发展的公用事业激励措施。针对可再生能源发电的可用性和公用事业网计量激励措施,制定了一个最佳控制问题,用于控制恒温控制的家庭负荷和能量存储。该方法论已在1990年代建造的典型美国房屋中得到证明,该房屋配备了单速空气对空气热泵,电热水器和光伏(PV)收集器。还考虑了与利用电池相关的额外电势。现场可再生能源发电的负荷匹配性能的特征在于现场消耗的电力生产的百分比和满足的需求比例。为了评估电势,在假设电气负载曲线完美预测的情况下进行了模拟。对于给定的净计量程序,该方法还可以确定光伏系统的最佳尺寸。案例研究的结果表明,与控制优化相关的显着优势包括将负载匹配提高3%至28%,而这种提高取决于净计量费率和可用存储容量。相对于没有采用单一回购率进行优化的情况(根据可用存储容量),估计的消费者节省的成本在6.4%至27.5%之间。相关的二氧化碳排放量减少了11%至46%。对家庭供暖系统的最佳负载管理可将光伏系统的最佳尺寸增加13-21%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号